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A mathematical model for the transient heat flow analysis in arc-welding processes is 
proposed, based on a unique set of boundary conditions. The model attempts to make use of 
the relative advantages of analytical as well as numerical techniques in order to reduce the 
problem size for providing a quicker solution without sacrificing the accuracy of prediction. 
The variation of thermo-physical properties with temperature has been incorporated into the 
model to improve the thermal analysis in the weld and heat-affected zones. The model has 
been evaluated using a five-point explicit finite difference method for analysing the welding 
heat flow in thin plates of two different geometric configurations. The temperature distribution 
closer to the heat source, primarily in the weld zone and the heat-affected zones, are predicted 
by the numerical technique. The thermal characteristics beyond the heat-affected zone are 
amenable to standard analytical techniques. The behaviour of the boundary condition in the 
model has been investigated in detail. 

1. Nomenc la ture  
q' Rate of heat per unit thickness (W m-1) 
d Plate thickness (m) Ko 
v Velocity of source (m s- 1) 
t Time (s) r 
T Temperature value at the desired point (K) 
To Initial temperature (K) co 
k Thermal conductivity (W m 1 K -  1) a 
p Density (kg m -  3) 
c o Specific heat (J kg-  1 K -  1) 

Thermal diffusivity (m 2 s -  1) 
q ' v  I t" 

n 4 r c ~ Z P c p ( T a o 3  - To )  (m-l )  

Distance of point considered from the source 
(~ = x - v t )  (m) 
Modified Bessel function of second kind and 
zero order 
Radial distance from the source (r = (x 2 
+ y2)1/2) (m) 

Model width (m) 
Plate width (m) 
Distance from the source ~ = (~2 + 4 
X 10-4)  1/2 (m) 

2. I n t r o d u c t i o n  
The transient temperature field produced by a moving 
heat source, such as an arc, has profound influence on 
the properties of the material close to the heat source, 
and the material is modified in structure as well as in 
properties due to a variety of phase transformations. 
The analysis of welding heat flow, thus assumes im- 
portance as the basis for the understanding of physio- 
mechanical properties of welded structures. Initial 
attempts at heat flow analysis were analytical in 
nature [1]. Rosenthal [2, 3] is credited with develop- 
ing the first analytical solution for heat flow analysis 
in one, two and three dimensions. The application of 
analytical solutions to the real situation indicated an 
excellent correlation away from the heat source [1-3]. 
This region can be identified as that portion of the 
material undergoing only Newtonian heating and 
cooling cycles. Appreciable departures from the real 
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situation were, however, observed close to the heat 
source. The limitation of the analytical solution in the 
close proximity of the heat source may be attributed 
to the simplifying assumptions (such as point/linear 
source, temperature-independent properties, etc.) 
made while deriving the analytical solutions. Attempts 
[4, 5] to incorporate more realistic terms in 
Rosenthal's solution could only provide limited suc- 
cess in the vicinity of the heat source. However, the use 
of numerical methods coupled with powerful digital 
computers, have allowed more detailed analysis of the 
heat flow in this region. The advantage of the pro- 
posed numerical technique lies in its ability to handle 
complex geometries, variation of material properties 
with temperature, phase transformations, etc. These 
numerical techniques, such as the finite difference 
method (FDM) and finite element method (FEM), 
yield better temperature predictions close to the heat 
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source, and can also compute residual stress and 
microstrueture, etc., which are helpful in rationalizing 
the ultimate physio-mechanical behaviour of weld- 
ments [6-10-1. These methods, traditionally consider 
discretization of the entire system, and therefore can 
be time-consuming and expensive. 

The present investigation examines the possibility 
of developing a combined model using the advantages 
of analytical as well as numerical methods, thus cut- 
ting down on expensive computation time, whilst 
maintaining accuracy; such attempts do not appear to 
have been made earlier, although similar views have 
been expressed in the literature [11]. The present 
paper is part of a comprehensive programme [12], 
that includes forecasting the size of the heat-affected 
zone (HAZ) and microstructure, etc., using the ther- 
mal behaviour predicted from the model. 

3. M a t h e m a t i c a l  m o d e l  
The model has been formulated for two distinct geo- 
metric configurations. The first, termed the infinite 
case, deals with a situation wherein welding heat flow 
in large, thin plates is simulated. A similar treatment 

k = 75.00 - 0.073 T + 0.205 x 10 - 4  T 2 

cp = 416.0 + 0.637 T - 0.252 x 10 - 3  T 2 

p = 7950 - 0.162 T - 0.175 x 10 -3 T 2 

for plates of finite width, termed the semi-infinite case, 
is then carried out. 

3.1. Physical model 
The case discussed here relates to butt-welding two 
flat plates between which an intense heat source, such 
as an are, moves with a constant velocity. The energy 
input per unit thickness of the plate was assumed to be 
constant. The path of the source coincided with the 
axis of symmetry of the system. The regions of the 
plates close to the moving heat source melt and thus 
welding proceeds. The illustration in Fig. la depicts 
the infinite situation. The plates are assumed to extend 
to infinity in the x- and y-directions, and, hence, can be 
designated an infinite system [13, 14]. Fig. lb illustra- 
tes the case where the plate width (measured along the 
y-direction) is finite, while the plate length (measured 
along the x-direction and the direction of welding) 
extends to infinity. 

3.2. A s s u m p t i o n s  
The model has been formulated using the following 
assumptions. 

1. The mode of heat transfer in the plates is strictly 
conductive and restricted to the x - y  plane only. 

2. Convective heat transfer within the weld pool is 
simulated by the use of thermal properties of the liquid 
metal such as thermal conductivity, specific heat and 
density. 
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3. Heat losses through vaporization of the material 
in the fusion zone are neglected. 

4. Convection and radiation losses perpendicular 
to the plane of the plate are neglected. 

5. Heat flow is symmetrical with respect to the 
geometric axis of symmetry. 

6. Material properties such as thermal conduct- 
ivity, specific heat and density, etc., have a definite 
functional relationship with temperature. 

7. The size of the heat source is equal to that of the 
element in the model adjacent to the axis of symmetry. 

3.3. Problem formulation and boundary 
conditions 

The basic equation of heat conduction in two dimen- 
sions in a solid is 

e x \  e x )  + Q = (1) 

where k, p and c v denote the thermal conductivity, 
density and specific heat of the material, and Q is the 
heat generation term. The variation of these thermo- 
physical properties of steel with temperature 
expressed as follows [15]: 

W m - I K - 1  

J k g - l K  -~ V T, 27 _< T_< Tm 

kgm -3 

is 

(2) 

(3) 

(4) 

The mathematical analysis of heat flow in a weld- 
ment for the present case is essentially a solution of 
Equation 1 for a set of given initial and boundary 
conditions. 

L ro,. 
ofld /" 
HAZ ~ / / . /  

Figure 1 Physical model of butt-welding of thin plates representing 
(a) an infinite case and (b) a semi-infinite case. 



3.3. 1. Initial condition 
The initial temperature distribution in the material 
being welded defines the initial condition. Assuming 
that there is no preheating, the initial condition may 
be mathematically stated as follows: 

At t = 0, T(x,y) = T o v x , y  (5) 

depending on the value of ~. 

At x:it q-E x = T =  To+cppov  e-(~l~) 
and t > 

(v)l "{- E - -  e - ~-(~" + 1)v~]/2~ COS V y 
n =  1 I~r t  

(lla) 

3,3.2. Boundary conditions 
An axi-symmetric boundary condition, also termed 
the Neumann condition [16], is imposed along the 
welding central line depicted in Fig. 1. Accordingly 

At yt = 00} _ k  ~ T  and > ~yy - 0 V x  (6) 

3.3.2.1. Infinite case. 

At x = 0 }  T~ + 2~k ( v r ~  v 
x = 1 T = (~'~/2~)Ko\2~t j 

and t > 0 

or  

q' e 
- - ~  (v/2c0( ~ + r) /~@ 1/2 V y 

T ro + 
2xk \ v r /  

; }  zKKq' -(v{/Ra) (v2~) 
At Y T = T O + ~ , ,  e Ko 
and t > 

Y 

(7a) 

(7b) 

V x  

(8a) 
or  

q 
T To + 2~ke (v/2~)(~ + ~) 'IZ(X 1/2 = V x (8b) 

va / 

The narrow portion of the plate chosen between the 
boundary limits y = 0 to y = a forms the width a of 
the model. This width is a function of welding speed 
and the energy input, and can be calculated with the 
help of an equation suggested by Adams [17] by 
substituting 0.3 T m in place of the peak temperature. 
However, an optimized width of 0.02 m was chosen 
throughout the present investigation. It is now evident 
from the boundaries of the hypothetical plate defined 
above, that the model area would be a very small 
fraction of the total area of the plate. 

3.3.2.2. Semi-infinite case. 

for ~ > 0, and 

q' 
T = T o + - -  

Cp 9cov 

x 1+ ~ _2 e[(O, 1)~l/2~cos V y  (llb) 
tl ~ 1 ]J*rl 

for ~ < 0. 

Similarly, Equations 12a and b, as given below, may 
be used for evaluating the boundary condition given 
in Equation 10. 

At y = a T = To + c--ppo3v e-'~/~) 
and t > 0 

+ ~, - -  e - [(~~ + 1)~]2~ cos (12a) 
n = 1 I']-tl 

for ~ > 0, and 

q' I 1 "=+~ 2 ( ~ ) 1  T = T O + CoOl, or + n=E1 --~tn e[(g,-1)v~]/20t COS 

(12b) 

for ~ < 0. 

The geometrical width of the model, between the 
limits y -- 0 to y = a, corresponds to a as indicated in 
the previous case. A comparison between Equation 12 
and Equation 8 would indicate that the temperature 
value in the y-direction in the semi-infinite case is 
influenced by the finite width, r of the plate. 

The model, thus defined by the initial condition 
(Equation 5) along with boundary conditions as de- 
scribed previously (Equations 6-8 for the infinite case 
and Equations 6, 9-12 for the semi infinite case) can 
be appropriately termed the mixed boundary model 
(MBM). 

At x = 0 ]  

x =  11 T = T ~  
and t > 0 

q' 
+ ~ e - (v~/2:,) 

At y = ; } T =  To 
and t > 

.=co (roy) 
K ~  Vy (9) 

~1= co 

q' "=co ( r , v )  
+ ~k- e-(~'/2~) ,=-coZ Ko \~-~ ] V x (10) 

3.4. S o l u t i o n  p r o c e d u r e  
A five-point explicit finite difference technique was 
chosen for the evaluation of both cases. The system 
was discretized into a fine mesh. The grid-spacing in 
the x-direction was kept constant at 3.33 x 10 .3 m. A 
variable grid-spacing was employed in the y-direction. 
The grid spacing close to the heat source was 8.33 
x 10 .4 m, while the spacing in the rest of the plate was 
3.33 x 10-3 m. The time-stepping in the algorithm is 
based on a check on the stability criteria [18]. 

A simplified version of this boundary condition can be 
obtained by transforming Equation 9 or 10 into a 
Fourier series [3]. Accordingly, Equations 1 la and b, 
as shown below, can be used in place of Equation 9, 

4. Results and observat ions  
4.1. Infinite case 
The development of various transient temperature 
fields in an infinite plate, in the narrow strip as defined 
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by the boundaries of Equations 6-8, at two different 
time intervals, are presented in Figs 2 and 3 in the 
form of dimensionless maps. The dimensionless iso- 
therms on this map, as well as on the others, are also 
based on the reference temperature, Ae3 , of steel. These 
maps are generated by using dimensionless groups 
from the literature [-19-1. Such groups used in this 
context are listed in Table I. The figures illustrate 
isotherms for a hypothetical welding situation of steel 
plates. An operating parameter of 0.25 was used in 
computing these maps. 

The isotherms drawn in Fig. 4 are the superimposi- 
tion of contours for different values of operating para- 
meters at a constant value of dimensionless time. A 
similar presentation in Fig. 5 is made, where the con- 
tours are superimposed for a case in which both 
operating parameter and dimensionless time are 
varied. The dimensionless distance in the welding di- 
rection, as well as in the transverse direction, depic- 
ted in Fig. 5, are based on an average velocity of 
3.5 • 10 -3 ms -1. 

�9 4 . 2 .  S e m i - i n f i n i t e  c a s e  

The dimensionless maps of isotherms, for the semi- 
infinite case, are given in Figs 6-8. Fig. 6 represents a 
typical pattern of temperature distribution due to the 
moving heat source satisfying the boundary condi- 
tions defined in Equations 6, 9 and 10. Figs 7 and 8 are 

T A B L E  I Dimensionless groups 

Symbol Name Description 

qv 
rl Operating parameter 

Dimensionless temperature 

Dimensionless x-axis 

t~ Dimensionless y-axis 

Effective thickness, 

z Dimensionless time 

4/~2pcp(TA.3 -- To) 

T-To  

TAo3- To 

1)X 

2~ 

1)X 

2~ 

vd 

2~: 

1)2t 

2~ 

diagrams in which the isotherms for different values of 
operating parameters are superimposed for compari- 
son. Fig. 7 compares the variation in the isotherms 
due to the variation in the operating parameter. The 
isotherms are obtained at �9 = 12.95. A similar super- 
imposition of isotherms for various values of oper- 
ating parameters is made in Fig. 8. Here, the 
dimensionless distance along the welding direction, 

0.33 - 

0.67 - 

1.00- 

1.33 - 

1.67 

0.21 -1.88 -3.54 -5,21 -6.88 
I I I t 

Y 

n-.- 0.25 [ x 
"c : 1 .46  ! ,-.-- 

Figure 2 Dimensionless map depicting isotherms in the hypothetical plate at z = 1.46. The values of the isotherms plotted are 0.24, 0.38, 0.54 
and 0.67. 

0.33 

0.67 

1 .00  

1.33 

1.67 

n = 0.25 
~= 7.30 

5.41 -1.25 
I 

3.75 2.08 0.42 
I I I 

r ~ X  

Figure 3 Dimensionless map depicting isotherms in the hypothetical plate at z = 7.3. The values of the isotherms plotted are 0.24, 0.38, 0.54, 
0.67 and 0.81. 
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0.33 - 

0 .67  - 

1.00 - 

1.33 - 

1.67 

5.41 5.75 2.08 0.42 
I I I I 

~=7.3 
~ X  

-1.25 

Figure 4 Var ia t ion  of t empera tu re  d i s t r ibu t ion  wi th  respect  to opera t ing  parameter .  Dimens ion less  t empera tu res  of 1.11 and  0.54 are 

compared .  ( - - - )  n = 0.40, ( - - )  n = 0.53. 

0.33  - -  

0.67 -- 

1.00 - -  

1.33 - -  

1.67 

5.41 -1.25 
I 

3.75 2.08 0.42 
I I I 

\ \  ! 1  " 

" 0,54 --"-/ 

~ 0 . 5 4  / . Y  [ J 

Figure 5 C o m p a r i s o n  of d imens ion less  i so therms  at  v = 3.5 • 10-3  m s-1.  O p e r a t i n g  pa rame te r  and  d imens ion less  t ime are varied. ( 

n = 0.19, ~ = 5.2; ( - - - )  n = 0.25, z = 7.3. 

0.32 - 

0.65 - 

0.97 -- 

1.30 -- 

1.62 - 

4.65 ,.3.04 1.42 - 0 . 2  

X 

-1.82 

Figure 6 Dimens ion less  m a p  depic t ing  a typical  t empera tu re  d i s t r ibu t ion  in the hypo the t i ca l  semi-infinite plate.  The  values  of the i so therms 

are inscr ibed on the contours ,  z = 6.48, n = 0.06. 

as well as in the transverse direction, is based on an 
average welding velocity of 5.4 x 10 -3 ms -1. 

5.  D i s c u s s i o n  
The temperature distribution predicted by the model 
in the hypothetical narrow strip is now based on a 
non-conventional set of variable boundary conditions. 
Hence, the behaviour of the model will be crucially 
dependent on the governing boundary conditions and 
the assumptions made while deriving the model. 
While some of the assumptions mentioned earlier 
are self explanatory, a few would warrant further 
elucidation. 

The correlation of theoretical cooling rates at the 
top and the bottom of the plates on the welding 
central line is an indication of the dimension of heat 
flow (e.g. [20]). Accordingly, when the cooling rates on 
the central line at the top and the bottom of the plate 
being welded are identical for a plate of a particular 
relative thickness, the heat flow is said to be restricted 

to two dimensions. The heat flow along the thickness 
of the plate would be negligible. Depending on the 
welding operating parameter employed in this 
exercise, it has been proved [12, 20] that Assumption 
1 is valid in the present context. 

Assumptions 3 and 4 are basically simplifications. 
Assumption 3 can be considered valid in the present 
context as the specific welding energy input range 
employed results only in a narrow zone of melting and 
hence will not lead to appreciable material and heat 
loss through vaporization. Similar argument can be 
extended to validate Assumption 4, that the possible 
heat loss due to radiation from a narrow (under the 
present energy-input range) zone will not seriously 
affect the cooling rate. The non-accountability in radi- 
ation loss will result in an increase in peak temper- 
ature. However, any change in peak temperature has 
been found to have only a marginal effect on the 
cooling rate in the temperature range 1073-773 K, 
which is the crucial range as far as the present predic- 
tions are concerned. 

2 0 7  



A" 
9.51 6.07 2.85 -0.40 

2.59 

3.24 

-3. 

Figure 7 Super impos i t ion  of i so the rms  for different values  of opera t ing  parameters .  The inscr ibed numbers  are the values of i so therms  
plot ted.  ~ = 12.95. n: (I~,, O)  0.14, (m,  D) 0.16, ( 0 ,  o )  0.19. 

7.39 4,B2 2.25 -0.32 

0.32  / 

'2 t 
2.57 . 

-2.89 

Figure 8 C o m p a r i s o n  of d imens ion less  i so the rms  at  v = 5.4 x 10 3 m s - 1 .  O p e r a t i n g  pa rame te r  and  d imens ionless  t ime are varied. The 

number s  inscr ibed on the con tours  are the values  of i sotherms.  (I~, ~ )  n = 0.12, z = 12.95; (11) n = 0.10, z = 10.29; (El) n = 0.10, ~ = 12.27; 
( 0 ,  O)  n = 0.06, z = 6.48. 

A similar explanation would validate Assumption 7. 
If the source size (or shape), contrary to this assump- 
tion, is spread over multiple elements, the predicted 
peak temperatures will be only less than the actual 
value. However, as before, this would not affect the 
cooling rate in the range 1073 773 K, which is crucial 
for predicting the microstructure of the steel [21]. 

The transient temperature distribution at z = 1.45 
(Fig. 2) and at z = 7.30 (Fig. 3) shows a gradual 
change in the temperature distribution pattern. The 
first observation is that the distribution predicted by 
the model, is in agreement with the expected behavi- 
our in which the highest temperature domain is lim- 
ited nearest to the heat source, with lower temperature 
zones fanning out. However, the distributions predic- 
ted at small times by this model presents a slightly 
different situation from reality. The temperature close 
to the "tail" portion of the contours drawn indicates a 
higher value than expected. This phenomenon may be 
termed a "pinched effect" and could be attributed to 
the boundary condition defined on the physical 
boundary line at x = 0, V y, particularly at small 
values of z, by Equation 7 as elucidated below. 

A detailed analysis of the boundary condition 
(Equation 7 for an infinite situation and Equations 6 
or 11 for the semi-infinite situation) which is applic- 
able at this physical boundary line, indicates that the 
thermal gradient in the welding direction, as one 
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moves away from the source on either side, tends to 
zero [-3, 22]. Mathematically 

a T  
lira - 0 (13) 

and 

lim T = T o (14) 

However, using Equations 7 9 and 11 

lim T = oe (15) 0 
Thus at small values of z, the situation predicted by 
the boundary condition is close to Equation 15. 
Hence, the temperature predicted by these equations 
at this boundary would be quite large. Depending on 
the loci of the source, the temperature at the boundary 
may be, sometimes, greater than the source temper- 
ature itself according to Equation 13. A similar ana- 
lysis of the boundary condition (Equation 8 in the 
infinite case and Equations 10 or 12 in the case of a 
semi-infinite system) also indicates that the thermal 
gradient approaches zero in the transverse direction 
[3]. Mathematically 

a T  
lim - 0 (16) 

y ~ + _ ~ Y  



and 

lira T = To (17) 
y-* -k oo 

The "pinched effect" thus deteriorates as one moves 
away from the source in the y-direction even at small 
values of T. In fact, this effect vanishes more rapidly as 
the source moves away from the physical boundary 
line defined at x = 0, V y, and will not be effective on 
the physical boundary line defined by the limits x = a, 
Vy. 

The analysis of Equation 10 (or Equation 12) indic- 
ates that the thermal gradient in the transverse direc- 
tion equals zero at the physical boundary of the 
semi-infinite solid. Mathematically 

a T  
I ~ 0 and T ~ T o a s y  ~ a (18) 
8y 

where once again a forms the geometrical width of the 
semi-infinite plate and co is the width of the plate. It 
should be borne in mind that the quantity 0~, the width 
of the strip, would be only a small fraction of the total 
width of the plate. Mathematically, a~c0. Further 
details regarding these conditions and the choice of a 
are discussed elsewhere [-12]. The difference in the 
temperature distribution in the lower temperature 
range, particularly in the transverse direction and 
away from the line of welding, may thus be attributed 
to the condition implied in Equation 18. 

The semi-infinite case presents an additional prob- 
lem at the boundary as predicted by Equations l la 
and b. An inspection of these equations indicates that 
the solution involves the summation of the terms 
whose contribution to temperature becomes signifi- 
cant. At small values ofz the source location is closer to 
the boundary x = 0, V y, hence the number of terms 
for summation required to predict temperature accur- 
ately becomes exceedingly large. A compromise 
regarding the accuracy of temperature in order to 
circumvent this problem at this juncture cannot be 
made, as this could result in erratic behaviour of 
the solution. 

Although it does not form a part of the present 
paper, it may be mentioned that temperature profiles 
for the chosen case. have also been predicted by the 
authors elsewhere [12] using the more conventional 
FDM and FEM techniques and an excellent cor- 
relation has been observed. Thus, a high degree of 
confidence in the use of MBM is assured. 

6. Conc lus ion  
A novel approach, based on the combination of nu- 
merical and analytical methods, termed the mixed 
boundary model (MBM), has been attempted for pre- 
dicting the transient thermal behaviour of the welded 
material close to the heat source in arc welding. 
Two different configurations, infinite and semi-infin- 
ite, have been studied. By shrinking the effective model 
area, the method appreciably reduces the extent of 
computational work without in any way affecting the 
accuracy. 
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